翻訳と辞書
Words near each other
・ Bloc Québécois Shadow Cabinet of the 40th Parliament of Canada
・ Bloc Québécois Shadow Cabinet of the 41st Parliament of Canada
・ Bloc Québécois Shadow Cabinet of the 42nd Parliament of Canada
・ BLOC1S1
・ BLOC1S2
・ Blocc Movement
・ Blocco Automatico a Correnti Codificate
・ Blocco Mentale
・ Blocco-Juve
・ Bloch
・ Bloch (company)
・ Bloch (TV series)
・ Bloch Brothers Tobacco Company
・ Bloch equations
・ Bloch function
Bloch group
・ Bloch MB.120
・ Bloch MB.131
・ Bloch MB.150
・ Bloch MB.162
・ Bloch MB.170
・ Bloch MB.200
・ Bloch MB.210
・ Bloch MB.220
・ Bloch MB.300
・ Bloch MB.480
・ Bloch MB.81
・ Bloch MB.90
・ Bloch oscillations
・ Bloch Park


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bloch group : ウィキペディア英語版
Bloch group
In mathematics, the Bloch group is a cohomology group of the Bloch–Suslin complex, named after Spencer Bloch and Andrei Suslin. It is closely related to polylogarithm, hyperbolic geometry and algebraic K-theory.
==Bloch–Wigner function==

The dilogarithm function is the function defined by the power series
:
\operatorname_2(z) = \sum_^\infty .

It can be extended by analytic continuation, where the path of integration avoids the cut from 1 to +∞
:
\operatorname_2 (z) = -\int_0^z \,\mathrmt.

The Bloch–Wigner function is related to dilogarithm function by
:\operatorname_2 (z) = \operatorname (\operatorname_2 (z) )+\arg(1-z)\log|z|, if z \in \mathbb \setminus \.
This function enjoys several remarkable properties, e.g.
*\operatorname_2 (z) is real analytic on \mathbb \setminus \.
*\operatorname_2 (z) = \operatorname_2 \left(1-\frac\right) = \operatorname_2 \left(\frac\right) = - \operatorname_2 \left(\frac\right) = -\operatorname_2 (1-z) = -\operatorname_2 \left(\frac\right).
*\operatorname_2 (x) + \operatorname_2 (y) + \operatorname_2 \left(\frac\right) + \operatorname_2 (1-xy) + \operatorname_2 \left(\frac\right) = 0.
The last equation is a variance of Abel's functional equation for the dilogarithm .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bloch group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.